Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix
نویسندگان
چکیده
Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of the optimal low-rank approximation of a tensor in the case that a factor matrix is column-wise orthonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix diagonalization and alternating least squares are presented. Numerical experiments are reported.
منابع مشابه
Canonical Polyadic Decomposition with Orthogonality Constraints
Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint and generalize the result to the case where one of the factor matrices has full colum...
متن کاملTensor Decompositions with Banded Matrix Factors
The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...
متن کاملAnalysis and Approximation of the Canonical Polyadic Tensor Decomposition
We study the least-squares (LS) functional of the canonical polyadic (CP) tensor decomposition. Our approach is based on the elimination of one factor matrix which results in a reduced functional. The reduced functional is reformulated into a projection framework and into a Rayleigh quotient. An analysis of this functional leads to several conclusions: new sufficient conditions for the existenc...
متن کاملBilinear transformation space-based maximum likelihood linear regression frameworks
This paper proposes two types of bilinear transformation spacebased speaker adaptation frameworks. In training session, transformation matrices for speakers are decomposed into the style factor for speakers’ characteristics and orthonormal basis of eigenvectors to control dimensionality of the canonical model by the singular value decomposition-based algorithm. In adaptation session, the style ...
متن کاملOptimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization
The canonical polyadic and rank-(Lr , Lr , 1) block term decomposition (CPD and BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD are important tools in psychometrics, chemometrics, neuroscience, and signal processing. We present a decomposition that generalizes these two and develop algorithms for its computation. Among these algorithms are alternatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 33 شماره
صفحات -
تاریخ انتشار 2012