Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix

نویسندگان

  • Mikael Sørensen
  • Lieven De Lathauwer
  • Pierre Comon
  • Sylvie Icart
  • Luc Deneire
چکیده

Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of the optimal low-rank approximation of a tensor in the case that a factor matrix is column-wise orthonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix diagonalization and alternating least squares are presented. Numerical experiments are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Polyadic Decomposition with Orthogonality Constraints

Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint and generalize the result to the case where one of the factor matrices has full colum...

متن کامل

Tensor Decompositions with Banded Matrix Factors

The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...

متن کامل

Analysis and Approximation of the Canonical Polyadic Tensor Decomposition

We study the least-squares (LS) functional of the canonical polyadic (CP) tensor decomposition. Our approach is based on the elimination of one factor matrix which results in a reduced functional. The reduced functional is reformulated into a projection framework and into a Rayleigh quotient. An analysis of this functional leads to several conclusions: new sufficient conditions for the existenc...

متن کامل

Bilinear transformation space-based maximum likelihood linear regression frameworks

This paper proposes two types of bilinear transformation spacebased speaker adaptation frameworks. In training session, transformation matrices for speakers are decomposed into the style factor for speakers’ characteristics and orthonormal basis of eigenvectors to control dimensionality of the canonical model by the singular value decomposition-based algorithm. In adaptation session, the style ...

متن کامل

Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization

The canonical polyadic and rank-(Lr , Lr , 1) block term decomposition (CPD and BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD are important tools in psychometrics, chemometrics, neuroscience, and signal processing. We present a decomposition that generalizes these two and develop algorithms for its computation. Among these algorithms are alternatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012